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Abstract. The polarization-dependent part of the neutron scattering in the triangular-lattice
antiferromagnet CsMnBr3 is studied. This scattering appears in an external magnetic field and
is determined by the projection of a chiral fluctuation on the sample magnetization (the dynamical
chirality, DC). It is shown that the DC cross section is an odd function of the energy transfer,
ω, and is proportional to the magnetic field up to 10 kOe aboveTN. A Be filter is used instead
of the analyser for measuring the DC scattering integrated overω < 0. It is shown that below
TN the field dependence of this intensity reveals two features related to the acoustic spin waves
and to a new type of low-energy magnetic excitation, presumably of topological nature. The
temperature dependence of the acoustic spin waves nearTN is in qualitative agreement with
dynamical scaling.

The frustrated triangular-lattice antiferromagnets (TLA) are currently being intensively
studied. The main interest arises from Kawamura’s idea [1] that magnetic phase transitions
in such compounds, as well as in helimagnets in general, should belong to new universality
classes with characteristic critical exponents that differ considerably from those for non-
frustrated magnets with collinear spin structures. The order parameter of such systems
includes, in addition to the ordinary spin variables,SR, a new relevant variable, the chirality
K = [SR1 × SR2], that describes whether the helically polarized spin structure is a right-
or left-handed one. For example, due to the chiral degeneracy, theXY -antiferromagnet on
a stacked triangular lattice does not have the symmetry of the order parameterV , namely
S1, as it does for the standardXY -model, but instead has the symmetry Z2 × S1, where
S1 describes the symmetry of a unit vector in theXY -plane, and the two-element (Ising)
group Z2 describes the two possible directions of the normal to theXY -plane [2]. The
corresponding critical exponents areα = 0.34(6), β = 0.25(1), γ = 1.13(5), ν = 0.54(2)
[1, 3]. Recent Monte Carlo simulations [4] and numerous experimental data (see [5–7]
and references therein) apparently confirm Kawamura’s conjecture. Nevertheless, there is
still considerable debate as regards this problem [8, 9]. For its complete examination one
should study the average chirality,〈K〉, belowTN, and investigate its fluctuations aboveTN.
Unfortunately, the former will be accessible only in a single-domain crystal, while the latter
are related to four-spin correlations, a direct experimental study of which is impossible.
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In reference [10] it was proposed that one might usefully study the projection ofK on the
sample magnetization induced by an applied magnetic field. This projection, which we call,
following [10], the dynamical chirality (DC), determines the part of the purely inelastic cross
section which is proportional to the neutron polarizationP0. The polarization-dependent
chiral contribution to the neutron scattering cross section was given as(

d2σ

d� dω

)
P0

= 2

π
P0(r0γF(Q))

2kf

ki

1

1− exp(−ω/T )
× (Q̂ · ĥ)2 Im S1(Q, ω)+ (ĥ · Q̂)(Q̂ · ĉ)(ĉ · ĥ) Im S2(Q, ω) (1)

whereS1 = 0 for theXY -model andS2 = 0 for the isotropic Heisenberg model, and the unit
vectors are:Q̂, the scattering vector;̂c, along the axis perpendicular to the layers; andĥ,
along the magnetic field direction. This expression was given in [10] without a derivation,
together with that for small-angle scattering in ferromagnets [11], and it is worthwhile to
give the derivation (we do this in the appendix of this paper). Here we only want to point
out that the sign of the chiral cross section is not determined, and forω � T it is an odd
function of ω as was demonstrated experimentally in [12] for small-angle scattering in a
ferromagnet. In a low magnetic field the chiral cross section should be proportional to the
field. However, it is restricted by the condition that follows from the positiveness of the
total differential cross section:(
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)
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P0

∣∣∣∣∣
(
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)
P0
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where the left-hand side is the polarization-independent part of the cross section. Hence
strong non-linearity should appear at higher fields.

In this paper we present the first results of a search for the effects of the dynamical
chirality which was performed with a crystal of CsMnBr3, an XY -antiferromagnet on a
stacked triangular lattice. CsMnBr3 has a hexagonal structure with space groupP63/mmc

and lattice parametersa = 7.61 Å and c = 6.52 Å at room temperature [13]. The
three-dimensional antiferromagnetic ordering of the Mn2+ spins,S = 5/2, occurs in zero
field at TN = 8.37 K [6]. The spins are restricted to a hexagonal plane, being ordered
in the triangular structure [14] with a twofold-degenerate chiral ground state which is
determined by clockwise or anticlockwise 120◦ spin rotation among the three nearest
atoms of an in-plane triangle. The nearest neighbours in different planes are coupled
antiferromagnetically with an exchange constantJ0/kB = −10.3 K, which is much stronger
than that,J1/kB = −0.02 K, in the plane [15]. As a result, CsMnBr3 exhibits quasi-one-
dimensional behaviour above about 15 K [16]. The application of a magnetic field in the
[100] direction splits the antiferromagnetic transition, and the result is an intermediate phase
with spin-flop character over a temperature range of about 0.1 K atH = 10 kOe [7].

A CsMnBr3 single crystal of ellipsoidal shape with a volume of about 0.5 cm3 was
grown by the Bridgman technique from appropriate amounts of CsBr and MnBr2. The
crystal was oriented so as to have the [11̄0] axis vertical (perpendicular to the scattering
plane). The measurements were carried out at ILL, Grenoble, on the IN14 cold-neutron
triple-axis spectrometer. The incident beam was monochromated by a pyrolytic graphite
crystal and subsequently polarized by a supermirror bender. The sample was mounted in a
fine-tail Orange cryostat at ILL inserted into the gap of a horizontal electromagnet providing
fields up to 12 kOe along the direction of the scattering vectorQ̂. The beam polarization
in this set-up, as determined with a Heusler analyser, was about 90% (a flipping ratio of
20). First of all, to obtain the intensity we measured the chiral cross section (1) integrated
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Figure 1. The plane investigated, in reciprocal space. The magnetic points are shown by closed
circles. The diagrams for the elastic scattering at the(0.3, 0.3, 1) point and the integration of
the energy over the neutron energy loss (alongkf ) are shown.

Figure 2. The temperature dependence of the magnetic Bragg intensity,I , at (1/3, 1/3, 1)
in H = 10 kOe. A log–log plot of the magnetic intensity versus the reduced temperature,
τ = (TN − T )/TN, is shown in the inset. The straight line is a fit of the formI ∼ |τ |2β with
β = 0.22(1).

over the energy transfer,ω. As it is an odd function ofω, such an integration should give
zero. However, we have used a technique that allows us to integrate just over the neutron
energy losses(ω = Ef − Ei < 0) whereEf andEi are the energies of the scattered and
incident neutrons respectively. For this purpose the measurements were carried out with a
Be filter replacing the analyser. The energy of the incident neutrons was chosen to lie in the
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middle of the filter transmission edge—Ei = 5.24 meV (ki = 1.59 Å−1)—so that most of
the detected intensity would correspond to energy-loss scattering. The scattering diagram is
shown in figure 1, where the magnetic reciprocal-lattice points are shown as closed circles.

To find the experimental values of the Néel point in applied magnetic fields, the
temperature dependence of the intensityI at the magnetic reflection point(1/3, 1/3, 1)
has been measured in 2.5 kOe and in 10 kOe (figure 2). Sharp transitions at 8.09 K in
2.5 kOe and at 8.10 K in 10 kOe have been found. The difference of 0.28 K fromTN

obtained atH = 0 in [6] can be attributed to the large distance between the thermometer
and the sample in the actual experimental set-up. The critical exponentβ which corresponds
to the order parameter was obtained from these measurements by means of a log–log plot
as shown in the inset of figure 2. The extracted value,β = 0.22(1) atH = 10 kOe, agrees
with the theoretical prediction of 0.25(1) for the Z2 × S1 universality class [3] as well as
with the previously determined experimental valuesβ = 0.25(1) [17] andβ = 0.21(2) [18].

Figure 3. The temperature dependence of1I = Ion− Ioff integrated over the neutron energy
loss atH = 10 kOe. A log–log plot of the ratio1I/I , where I = Ion + Ioff , versus the
reduced temperature is shown in the inset. The straight line is the best fit with the critical
exponent 0.44(6).

The chiral cross section (1) integrated over 0> ω > −Ei is proportional to the
intensity difference,1I = I on − I off , between the two values measured with a Be filter
for opposite neutron polarizations, i.e., with the spin flipper switched on,I on, and off,I off .
The temperature dependence of1I at the reciprocal-lattice point(0.3, 0.3, 1) is shown in
figure 3. It is very flat, having the dependenceτ−0.18(10) (τ = (T − TN)/TN) over the
temperature range 8.19 K 6 T 6 11.95 K (0.011 6 τ 6 0.495). A prediction for this
exponent,ϕK + γ = 2.33(11), has been made in [10], but one has to keep in mind that
this is valid only forq = Q−Q(1/3, 1/3, 1) = 0. At the same time, ifq is much higher
than the inverse correlation length,κ, the divergence can be shown to be much weaker
(as τ−0.4). According to the inverse-correlation-length data [18], our measurements were
done with q > κ at the lowestτ and q < κ at the highestτ . In this situation it is
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impossible to give any simple prediction for the temperature dependence of1I . However,
taking into account that the resolution ellipsoid widths (FWHM),1Qx = 0.014 Å−1,
1Qy = 0.026 Å−1, are comparable withq andκ, as well as the fact that the values ofq
corresponding to inelastic processes can even be higher than that of the ‘elastic’ momentum
q = Q(0.3, 0.3, 1) − Q(1/3, 1/3, 1), the temperature dependence of1I found in this
experiment aboveTN seems to be reasonable.

Figure 4. The field dependence of1I = Ion − Ioff integrated over the neutron energy loss
at T = 2 K (with 1I measured in counts/5 min) and atT = 8.45 K (with 1I measured in
counts/39 min).

From figure 4 it is seen that1I above the Ńeel point (T = 8.45 K) is proportional to
the external field, as it should be for the chiral cross section [10] in the approximation of
small field. In our case this approximation is valid at least up toH = 10 kOe.

The most striking feature of the integrated intensity data is a strong increase of the DC
scattering belowTN (figure 3), and its non-monotonic behaviour as a function of magnetic
field atT = 2 K (figure 4). It was shown in references [10, 11] (see also the appendix) that
the DC scattering is entirely inelastic. Thus, belowTN it should be attributed to the low-
energy magnetic excitations. According to [10], in the case of a conventional two-sublattice
antiferromagnet in a magnetic fieldH perpendicular to the sublattice magnetization, the
function ImS1 in equation (2) is given by

Im S1 = 2gµHS2J0T

ε2
q + (gµH)2

[δ(ω − εq)− δ(ω + εq)]P0 (3)

whereJ0 =
∑
JR, andεq is the spin-wave energy. The corresponding contribution of the

DC scattering intensity integrated overω < 0 is proportional to

1I ∼ − 2gµHS2J0T P0

εq[ε2
q + (gµH)2]

. (4)

Here, the right-hand side is a linear function of the magnetic field,H , if gµH is much
less than the spin-wave energy,εq. It has a maximum atgµH = εq and decreases for
gµH � εq. Qualitatively, such behaviour should occur for any well defined or diffusive-
like magnetic excitations with characteristic energyεq. However, the sign of the extremum
cannot be predicted in the general case.
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Let us consider now the field dependence of1I at T = 2 K shown in figure 4. One
can see a deep minimum at a value ofH between 1 and 2 kOe that is followed by a smooth
increase of1I up to the maximal value atH ≈ 10 kOe. The gradual increase of1I with H
is apparently attributable to the acoustic spin wave observed in CsMnBr3 [19]. According
to these data, the spin waves have an interplane dispersion in the form

εq ≈ (Q− 1/3,Q− 1/3, 0)× 4.3 meV. (5)

In our caseq = Q − 1/3 = 0.03, andεq = 0.13 meV. This corresponds to a field
H = 11 kOe forg = 2. AsH is alongQ = (1/3, 1/3, 1), the ĉ-component ofH is equal
to 9.4 kOe. Thus, atH = 10 kOe we are near the maximal value of the DC cross section
related to the acoustic spin waves. At the same time the minimum of1I seen in figure 4
should be attributed to a new low-energy mode withεq ≈ 0.02 meV atq = 0.03. Because
of its very low energy, this mode cannot be observed in a conventional inelastic neutron
scattering experiment like that described in [19]. Apparently this mode is connected with
the Z2 × S1 symmetry of the system. In this case we may consider it as a new type of
topological excitation. We are planning to continue our DC scattering studies in order to
determine the dispersion of this mode.

The temperature dependence of the ratio1I/I , where I = I on + I off , below TN at
H = 10 kOe, shown as a log–log plot in the inset of figure 3, should mainly be attributed
to a renormalization of the spin-wave spectrum in the critical region nearTN. Indeed, the
polarization-independent spin-wave scattering intensity atω < 0 is given by

I = S2J0T/ε
2
q (6)

and we get

1I

I
= εqgµH

ε2
q + (gµH)2

≈ εq

gµH
. (7)

The right-hand side of this expression has to be independent of the detailed form of the
spin-wave excitations.

According to the dynamical scaling, we may writeεq as a function of the reduced
temperature,τ = (T − TN)/TN, in the following form:

εq = εc|τ |ν(z−1)(Q− 1/3,Q− 1/3, 0) (8)

whereν is the correlation length exponent andz is the dynamical critical exponent. The
former has been determined for CsMnBr3 experimentally [18] asν = 0.54(3), in good
agreement with the theoretical value,ν = 0.53(2) [1]. The dynamical exponent,z, has
been measured in reference [20] forq < 0.07, and is equal to 1.47(6). As a result, for the
exponent in equation (8) we getν(z − 1) = 0.25(4). Experimentally, we found for this
exponent a value of 0.44(6), as shown by the straight line in the inset of figure 3. The
difference is only 2.6 standard deviations, and we might get an even better agreement if we
were to take the new low-energy excitation into account.

The differential chiral cross section (1) has been investigated atT = 8.45 K in
H = 10 kOe using a pyrolytic graphite crystal as the energy analyser. The difference
1Iω = I on

ω − I off
ω at a given energy transfer,ω, which is proportional to(

d2σ

d� dω

)
P0

is shown in figure 5, by closed circles, together with the sumIω = I on
ω + I off

ω (open
circles), which is proportional to the polarization-independent differential cross section of
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Figure 5. The neutron scattering intensities1Iω = Ion
ω − Ioff

ω (closed circles, left-hand scale)
and Iω = Ion

ω + Ioff
ω (open circles, right-hand scale) at a fixed neutron energy transfer,ω, as

functions ofω (T = 8.45 K andH = 10 kOe).

the magnetic scattering(
d2σ

d� dω

)
0

.

In spite of the rather large error bars obtained in this experiment, it is evident that the
differential chiral cross section is antisymmetric in energy transfer.|1Iω| for the maxima
at ω = ±0.12 meV is about a tenth ofIω, i.e., we are still far from the limit given by (2).

In conclusion, we have observed for the first time the effects of the dynamical chirality
in the TLA CsMnBr3 above and below the Ńeel point. In the paramagnetic phase nearTN,
we have demonstrated the antisymmetry in the energy transfer of the spin-dependent part
of the magnetic cross section and its linear dependence on magnetic field. In the ordered
phase nearTN, a qualitative agreement of the spin-wave contribution to the DC scattering
with the predictions of the dynamical scaling has been found. A new low-energy excitation
has been observed atT = 2 K which is presumably of topological origin. The study of
the dispersion of this excitation by means of field-dependent measurements like those for
which the results are displayed in figure 4 but at differentQ should clear up the last point.
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Appendix

In this appendix we present a derivation of the DC contribution (1) to the neutron scattering
cross section. This contribution was given previously without derivation. Some of the
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features have been formulated for small-angle scattering in ferromagnets [11] and for the
general case [10].

We begin with the well known expression for the magnetic scattering amplitude which
can be represented in two equivalent forms:

fmn(Q) = −r0γF(Q)SQmn⊥ · σ = −r0γF(Q)SQmn · σ⊥ (A1)

wheren andm label the initial and final states of the scatterer, with the energiesEn and
Em. The first form is the conventional one. However, if one needs to analyse the symmetry
of the susceptibility tensorχαβ , it is more convenient to use the second representation. The
corresponding expression for the cross section is

dσ

d�
= (r0γF(Q))2kf

ki

∑
nm

exp(−En/T )
Z

S
β

−QnmS
α
Qmnδ(ω + Emn)σβ⊥σα⊥ (A2)

where ω = Ef − Ei,Emn = Em − En,Z =
∑

n exp(−En/T ), and the bar indicates
averaging over the spin states of the neutron beam. Making use ofσασβ = δαβ + iεαβγ ,
we obtain

σ
β

⊥σ
α
⊥ = (δαβ − Q̂αQ̂β)+ i(εβαγ + Q̂βQ̂µεαµγ − Q̂αQ̂µεβµγ )P0γ (A3)

whereεβαγ is the antisymmetric unit pseudotensor. The expression in the first bracket is a
symmetric tensor that is generally used for conventional derivation of the cross section. The
second term is antisymmetric under permutation of the indicesα andβ and is proportional
to the neutron polarizationP0.

As we shall see below, in the cross-section expression this part is multiplied by the
antisymmetric part of the generalized susceptibility. This susceptibility is determined in the
usual way:

χβα(Q, ω) = i
∫ ∞

0
dt eiωt

〈
[Sβ−Q(t), S

α
Q(0)]

〉
(A4)

where [A,B] = AB − BA, and 〈· · ·〉 is the Gibbs average which is determined as∑
n Z
−1 exp(−En/T ).

From time-reversal symmetry (expression (127.14) from reference [21]) we have

χβα(H) = χαβ(−H) (A5)

whereH is the magnetic field or spontaneous magnetization. In particular, the tensorχβα
is symmetric ifH = 0. ForH 6= 0 the susceptibility may be divided into symmetric (S)
and antisymmetric (A) parts:

χ
(S)
βα =

1

2
(χβα + χαβ) χ

(A)
βα =

1

2
(χβα − χαβ). (A6)

The spectral representation for the susceptibility is given by the well known expression

χβα(ω) = −
∑
nm

exp(−En/T )
Z

S
β
nmS

α
mn[1− exp(−Emn/T )]
Emn + ω + iδ

(A7)

which can be easily derived by the method given in reference [21], chapter 127. Using
conventional decomposition,

(Emn + ω + iδ)−1 = P(Emn + ω)−1− iπδ/(Emn + ω) (A8)

where ‘P’ denotes the principal part, we select fromχβα the δ-function contribution that
determines the cross section. It should be noted however that this contribution does not
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coincide with Imχβα. The corresponding symmetric and antisymmetric parts ofδχβα may
be written as follows:

δχ
(S,A)
βα = iπ

∑
nm

exp(−En/T )
Z

(SβnmS
α
mn ± SαnmSβmn)δ(ω + Emn)(1− e−ω/T ). (A9)

By use of the hermiticity,S∗nm = Smn, one obtains thatδχ(S)βα is imaginary andδχ(A)βα is real.
As a result, the polarization-independent part of the cross section may be represented in the
usual way: (

d2σ

d� dω

)
0

= (r0γF(Q))2kf
ki

Imχ
(S)
βα (Q, ω)

π(1− e−ω/T )
(δβα − Q̂βQ̂α). (A10)

It is convenient to determine a functionSβα(ω) = iχ(A)βα . The polarization-dependent chiral
part of the cross section is given by the general expression(

d2σ

d� dω

)
P0

= (r0γF(Q))2kf
ki

Im Sβα(ω)

π(1− e−ω/T )
(εβαγ + Q̂βQ̂µεαµγ − Q̂αQ̂µεβµγ )P0γ .

(A11)

Let us consider now some properties ofSβα(ω). From equations (A8) and (A9) we
immediately conclude that ImSβα and ReSβα are even and odd functions ofω, respectively,
and ImS(0) = 0 as it should. For the isotropic case (the Heisenberg model)

Sβα = εβαρm̂ρSH (ω) (A12)

wherem̂ is a unit vector along the sample magnetization direction, we have(
d2σ

d� dω

)
P0

= 2(r0γF(Q))
2kf

ki

Im SH (Q, ω)

π(1− e−ω/T )
(Q̂ · m̂)(Q̂ · P̂0). (A13)

For planar magnets (theXY -model), the antisymmetric part ofχβα appears as a vector
product of neighbouring spins that is directed perpendicularly to the plane (along theĉ-
axis). As a result we have [10]

Sβα = εβαρĉρ(ĉ · m̂)SXY (ω) (A14)

and(
d2σ

d� dω

)
P0

= 2(r0γF(Q))
2kf

ki

Im SXY (Q, ω)

π(1− e−ω/T )
(ĉ · Q̂)(Q̂ · P̂0)(ĉ · m̂). (A15)

In the general case of uniaxial crystals, the chiral cross section is the sum of equations
(A13) and (A15). If we take into account that, as a rule, neutrons are polarized along the
direction of the field or in the opposite direction, we arrive at the chiral cross section (1).
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